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1. Introduction

In this project, a baseband digital communications link was investigated. In
particular, two important issues, timing recovery and channel equalization,
were explored. A popular technique for timing wave extraction was
examined both theoretically and through simulation. An adaptive equalizer
was designed to compensate for common channel distortions. Both a
lowpass and a multipath channel were simulated.

2. Timing Recovery
2.1 Theory

Figure 1 shows the CAPSIM topology used to perform the timing recovery
simulations. The binary data signal is transmitted through a pulse shaping
filter with a square-root Nyquist spectral response. The optimum matched
filter has the same response. The overall pulse spectrum, N{f}, has the
Nyquist spectral response characteristic eliminating inter-symbol
interference (ISI) over bandlimited channels. N(f) is given by,

i 1-a
T |f|5"§3’f—"
T -
N(f) =K1<g[l-sm[na If!-i%)D %<Ifl<12.tra (1)
¢ l+a
0 1fi > 3T

where .}— = 1000 Hz; the data rate of our system, and o is the coefficient of

excess bandwidth. The sampling rate of the system is 8000 Hz. The
recovered pulse is passed through a prefilter. The filter response of the
prefilter, H(f) is determined such that the spectrum of the resulting signal
is symmetrical about half the bit rate, 500 Hz. The reasons for this are
discussed later. Figure 2 shows the spectrum of the prefilter output signal

when 100% excess bandwidth is used in the pulse shaping filters (o = 1.0).
The output of the prefilter is passed through a squaring circuit. Denote the

signal at the output of the squaring circuit as x(t}. For binary baseband
transmission, x{t) can be written by,

x(t) = kz agglt-KT-1) . (2)
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Figure 1. Timing Recovery Topology
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Figure 2. Spectrum of Prefilter Output o = 1.0

where ay is the binary symbol set and g(t) is the impulse response of the
system through the prefilter. In [1], Franks shows that,

Ex2(t)} = azZ g2(t - KT (3)

Equation (3) relies on the fact that for stationary, independent binary
signals,



a2 k=n (4)
0 k#n

E{axap) =

Using the Poisson sum formula, Franks shows in [2] that E{x2(t)} can be
expressed by,

Bixce) = T 2 A exp{ZFe - ) (5)
where
Al= fc(%f) G df (6)
S

and gt} « G(f). For Nyquist pulse shaping, only A, Ag, A] exist
Examining the sum of complex exponentials in (5) it is evident that spectral

1
components exist at DC and at f = % . A sinusoid at f = T is the desired

timing wave. Figure 3 shows the spectrum at the output of the squaring
circuit for 100% excess bandwidth and prefiltering.
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Figure 3. Spectrum of Squared Signal x2(t), a = 1.0 Prefiltered
The output of the squaring circuit is passed through a high-Q bandpass filter
Ho(f) tuned to f = % . ‘This filter recovers the spectral component of E{x2(t)]
atf = %: . Denote the output of this filter as w(t).  In [2], Franks shows that

the signal w(t) is cyclostationary with period -IT . The mean of wit) can be
given by (7) including A} and A terms.

a2 2n(t -
E{w(t)] = 23? A Cos( K(T T')“)Hz (—‘i-‘) : (7)




The mean of w(t) has the desired properties of a timing wave. However, the
zero crossings of w(t) are used tc recover the receiver timing clock. The
key figure of merit for timing recovery systems is the variance in the zero

crossing phase of w(t}, denoted as %, in relation to the pulse period T. This
is the jitter variance of the timing signal.

?
An expression for the jitter variance of the timing wave, denoted as va.r(ﬂ, is

desired. Expressions for timing jitter in the presence of additive noise are
difficult to develop. Normally the jitter variance of design interest is
pattern-dependent jitter which depends on the statistics of the binary data.
It has been demonstrated in [3] that the timing jitter variance will decrease
in proportion to increasing mean slope of the timing wave wit) at its zero
crossings, and thus will be inversely proportional to the amplitude of w(t).
In [2], Franks gives a popular approximation for pattern-dependent timing

jitter {assuming Ho (%) = 1),

waft)« 2 (5 teo- 0

a2

where Cg and C; are constants which depend on the spectrums G(f) and
Ha(f) in a complicated way. For the rest of the analysis, it is assumed that Co
and C; are undetermined constants. It is clear from (8) that timing jitter is
inversely proportional to the square of the timing wave amplitude.

An interesting result shown in [1] is that Co = C; when certain spectral
symmetries are observed, i. e. if G(f) is symmetrical about f = 21—.1. and Ha(f} is

S etrical about T . In this case, the timing jitter vanishes. The symme
ymm T g

condition on Hg(f) is usually attempted in the high-Q filter design. The
symmetry condition for G(f} is not met by Nyquist pulse shaping: this is why
the prefilter Ha(f) is included. In the absence of a prefilter, the jitter
variance will be inversely proportional to the square of A; (assuming Cg, C:

fixed). A; depends linearly on the excess bandwidth constant «, as is
developed below for Nyquist pulse shaping.



A; given by (6) for 1 = 1. Gl(f) given by (1)

K

Gl

N l O ) (CEGER ) LT

Lo
=5%IQ— J cosz(%(f-g%))df (10)
-5 [-;—[fi%)q%sm(’—aﬁ[f%))]% (1
=KiT2|:%] (12)

A; =K12g°‘ (13)

For systems where no prefilter is included, timing jitter will vary aalg.

Systems with little or no excess bandwidth cannot use this technique for
timing recovery.

2.2 Simulation Results

Figure 4 shows the timing wave for the topology shown in Figure 1 where a

prefilter is included. Excess bandwidti i< 100% (o = 1.0). As can be seen,
the variation in the zero crossing phase is small. Figure 5 shows the
corresponding case where the prefilter has been removed. Here jitter



variance is more noticeable. For both cases, the gain of the filter Half) at

f= 4 = 1000 Hz was determined to equal 100.0. Also, a2 is identically one,
and K; = 8.14 was determined experimentally.
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Figure 4. Timing Wave With Prefilter o = 1.0



1
Aww = (2 * var(w(t))?

(14)

The theoretical prediction for jitter variance is then given by (15), (16),

(17), and (18).

A
T 1 T 2
va.\{.FJ == m (Co - C1)

T 2
Z
Ta
47[ b 100 . Kls

2
( 2 J (Co - C1)

"

(Co-C1)

"

1007c(8.14)2

__(Co-C1)
"~ 1.083 ¢ 108 o2

Table 1 lists the theoretical and predicted jitter variances.

(15)

(16)

(17)

(18)
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Measured | Normalized | Predicted

A

Measured m{% ,,m.@) m{%)

With prefilter 5287 0.4223 3.25-10-6 0
Without prefilter 1643 3.031 23.39¢10-% | 33.7-10-°
Table 1. Jitter variance without prefilter, o = 1.0, Q@ parameter = 0.99

Fal

Here the predicted value for Vd.l{%) without prefilter is derived by dividing a

proportionality constant by the amplitude squared of the timing wave, the
proportionality constant Ko being derived from the case with prefilter

A
T Ko .
\G]{T] = Bw? Kz = 90.84 (19)

This is probably invalid since the system with prefilter should have zero
jitter variance. The fact that it didn't indicates that more points should have
been skipped to ignore transient effects. The fact that the sc apling rate is
only eight times the bit rate also should account for a small amount of jitter
variance with prefilter.

A baseline figure for {Cp - C1) can be calculated from the case without
prefiltering

Co - C1 = 2533 (20)

It should be mentioned that no bit errors where observed for either case.
For both cases, a delay of ~20 was observed in the generation of a timing
clock. For both cases, the timing clock did not stabilize until after 90 bits.

2.3 Excess Bandwidth and Jitter

The relationship between timing wave amplitude, timing jitter and excess
bandwidth are given in (7}, (8) and (13). Here the system was simulated for
various values of excess bandwidth. No prefilter is used. The timing jitter is
predicted using both the baseline figure for (Co - C1) given by (20), and also

by (19), where Ky is determined for the case a = 1.0, no prefilter.
Ko = 63.14 (21)

This allows one to see how jitter variance varies with measured vs. predicted
timing wave amplitude. Table 2 lists the simulation results.

11



a=1.0 o= 0.8 a=0.5 o=02

Excess Bandwidth 100% 80% 50% 20%

Al 0.00828 . 0.00662 0.004_14 0.00166
Measured var (Q/T) 3.061 12.58 88.73 2487
Normalized var [fc\ /T) 23.62 « 110‘b 97.07 » 10-° 68%.6 -_10'5 19.19 ¢ 10-°
Measured Aqw 1642._7 1335.1 87_7.78 449 .98
Predicted Atw 1656 1325 828 331

Predicted var [?/T) 23.38+ 100 | 36.54 » 10-6[ 93.55 « 10| 584.7 « 10°°
(from Cq - C1)

Predicted var (¢/T) | 23-40 * 105]35.42+105[81.95¢10°® 311.83¢10°0
(from Ka, Atw)

Py (BER) 0/4050 0/4050 0/4050 534/4050
(0.1318})

Table 2. Jitter variance vs. excess bandwidth
Predicted Atw is given by (22)

-— w2
2a Ta :
Atw-—Tl-Kls Ho (%) = 16560 (22)

For these cases, the Q parameter = 0.99, resulting in Hg(%) = 100.

Predictions for the amplitude of the timing wave are very accurate for

o > 0.2. This explains the close correlation between the two techniques for
sl

predicting va.r[% since one relies on the predicted timing wave amplitude
and the other on the measured value.

The predictions for timing variance do not match the measured results.
The jitter variance increases much more rapidly than Elf and starts to

increase by ;14. This is most likely due to the improper assumption of (Cg -

C1) being fixed. More accurate predictions would have to take the
relationship with Cp, C; and excess bandwidth into account.



‘No bit errors were observed until o = 0.2. Figure 6 shows the timing wave
A

for this case. For a measured v :I.t- of 19.2 » 1073, the resulting ¢ would

equal 0.14/T. It is then clear why bit errors would be appreciable. For
Nyquist pulse shaping, sampling amplitude is sensitive to sampling phase.
As excess bandwidth decreases, the sensitivity to sampling phase increases.

Even with prefiltering, a PAM system with & = 0.2 would demonstrate more
bit errors than for larger a.
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Figure 6. Timing Wave for No Prefilter o = 0.2

2.4 The Effects of Additive Noise on Timing Recovery
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The performance of the timing recovery system in terms cf additive noise
and bandpass filter Q are examined next. No predictions for jitter variance
are given since no easily evaluated expression for jitter variance in terms of
additive noise were found. For these simulations, excess bandwidth of 100%
is used, and a prefilter is included. Jitter variance without additive noise
should theoretically be zero.

The gain of the bandpass filter Ha{f) in terms of the Q parameter was
determined experimentally to obey (23).

1 1

Ha(g) = 1-Oparam (23)
The resulting Q values for Hz(f) when Qpar = 0.9, 0.99, 0.999 were not
determined. For larger Qpar. the gain of Ha(f}. increases. For a system
without prefiltering, this is advantageous since the jitter variance is
inversely proportional to the square of the timing wave amplitude. For a
systern with a prefilter and additive noise, higher bandpass gain should not
improve performance. Higher bandpass Q should improve performance,
however, since the noise bandwidth is reduced.

Table 3 gives the results of simulations for Qpar = 0.9, 0.99, 0.999 and
additive channel noise op< = 0, 0.05, 0.5.

Timing wave amplitude scales roughly with the bandpass gain Hj [.lf) for
each case. For the case of Qpar = 0.9, appreciable jitter variance exists even

when op2 = 0. Figure 7 shows the timing wave for this case. For op2 = 0.5,
appreciable bit errors are occurring.



EYE DIAGRAM : Timing_wave

Y

1500.00 . Y T .

900.00 - -
300.00 = -
-30000 L <
'900.m s -
-1500.00 M : 1 !

-0.80 -0.48 -0.16 0.16 0.48 0.80
X

Figure 7. Timing Wave for Qpar = 0.9, 0p2 = 0

For the case where Qpar = 0.99, 0.999, jitter variance isn't excessively large,
even with large op2. Figure 8 shows the timing wave when Qpar = 0.999,
on? = 0.5. Timing jitter appears insignificant (o = 0.0098). It is interesting
to note that the jitter variance appears to increase almost linearly with cn2

as on2 varies from 0.05 to 0.5. This suggests that jitter variance is directly
proportional to additive noise.

Figure 9 shows the recovered timing sample signal for the case where
Q =0.999, o2 = 0.

15
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Normalized var| = 3.26¢ 106 74.16+ 106 6.86 ¢ 104

Pp 0/990 0/990 0/990

,
Measured va:(%J 0.130 1.005 12.38

A

3

Normalized va.r(% 1.00 » 106 7.75 ¢ 106| 95,32+ 106
Y,

Pp 0/990 0/990 0/990

Table 3. Jitter variance vs. Qpar

Significant differences in the transient behavior for this signal for fixed
additive noise and varying Qpar was not observed. What was observed was
that increasing additive noise from op2 = O to 0?2 = 0.05 caused the timing
samples to begin sooner and settle into a stable state sooner. Without
additive noise, the timing samples usually started at bit 20 and settled by bit
90. The delay is due to delays in the pulse shaping filters, prefilter and
bandpass filter. With additive noise, the timing samples started at bit 16
and settled by bit 50. A possible explanation for this behavior is that the
statistics of the data signal for the first few bits are correlated and are not

1
"white" enough to prevent a significant spectral content at f = 35 at the input

of the squarer. Additive noise "fires up" the timing circuitry faster. Also, the
uncorrelated nature of the noise help the timing samples to settle faster.

The results from Table 3 indicate that a high-Q bandpass filter is desirable.
One trade-off to using a high-Q filter is that performance can deteriorate

drastically if the filter is not tuned precisely to f = 21_1‘

3. Adaptive Filtering

18



Figure 10 shows the topology for a non-ideal transmission channel. The
channel has a lowpass filter to simulate the lowpass characteristic of most
transmission channels (i. e. twisted pair, coax). The dual paths with gain
and delay modeling multipath reflection are often encountered in twisted
pair channels from bridged taps or in microwave systems from reflections
off water, buildings, etc. The addnoise star models additive white Gaussian
thermal noise always encountered in transmission channels. Adjusting the
channel parameters can result in a channel with severe distortion.

Figure 10. Transmission Channel With Optimal Low-Pass Characteristic,
Multi-Path Distortion and AWGN o

3.1 Theoretical Bit Error Rate No Channel Distortion

In this section, the theoretical bit error rate (BER) of a PAM system is
compared to simulated results. The topology used closely resembles that
shown in Figure 1 without the timing recovery subsystem. The probability of
bit error (Pp) for a binary PAM system is given by

Py = Q[A—) (24)
200

where d is the distance between possible sample points and op is the AWGN
at the sampling point which equals the noise variance at the output of the
matched filter. Py can also be expressed by

Py = Q(\/%_) (25)

19



where
s = (5 s V= o0? (26)

An important figure of merit is to calculate Py, in terms of the noise power in
the channel. For AWGN, the power spectral density of noise can be
expressed by

N
Snnld = 5 (27)

The noise power in a channel of bandwidth W is
62 = NoW (28)

For the system simulated, the sampling rate is 80,000 Hz resulting in a
bandwidth W of 40,000 Hz, The noise power at the output of the matched
filter is shown by Sklar in [4] as

W
N
602=—2-Q I | H(f) 12df (29)
W

For this system,

40,000
j |H(D) | 2df = 650.000 = 80,000 * 8.14 (30)
-40,000

was determined experimentally. Then
2 _No 2
60°="75 * 8.14 « 80,000 = 8.140n (31)
The probability of bit error can also be given by

2E
Pp = g( —Nob | (32)
where

Eb = A’T = 15000 (33)

2(



is the energy per transmitted bit (the pulse shaping filter preserves unit bit
energy).

Finally,
2E :
b 10,000 65.12 63.92
= = ~ 34
No 20'02 002 0-02 ( )

8.14 » 80,000
where 63.92 was determined to be the signal power S at the sample point.
Table 4 compares measured Py versus SNR and predicted Pp. Figure 11 is a

plot of these values. As can be seen, there is close correlation between the
theoretical and measured results.

SNR SNR | Ep/Np Measured Measured Theoretical
(dB) | (abs) | (dB) o0 Pp Py
3.35 2.16 0.33 29.59 0.0694 0.0708
531 | 3.39 2.30 18.84 0.0295 0.0329
7.26 5.32 4.25 12.02 0.0094 0.0104
9.20 8.31 6.19 7.694 0.00108 0.0020
11.3 13.6 8.13 4.707 0.000125 0.000122
11.6 14.4 8.56 4.455 0.0001001 0.000081
12.5 17.9 9.52 3.574 0/39970 0.000012

Table 4. Py vs. SNR

3.2 Adaptive Equalization of a Lowpass Channel

For this section. a channel with a lowpass response is analyzed. The impulse
response of the channel is given in terms of a pole parameter o

y(n} = ay(n - 1) + (1 - a)x(n) (35)
This results in a z-transform

Y(z) l1-a
H,(2) = X(z) = 1-oz

1 (36)

and a DFT response

21
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Figure 12. Lowpass Filter Magnitude Response



l-o
0 _ —=-C&
H;(el¥ = 1 - qel® (37)
where "
2nf 2xf
®=F"=380,000 (38)

The magnitude of Hi(el®) is given by

lH,e9 | = 1« (39)

2
1+02- 2acos[flrJ
S

The response is plotted in Figure 12 for a = 0.9, 0.99, 0.999. As can be

seen, for ¢ = 0.99, 0.999 the channel exhibits severe attenuation in the
bandwidth of 10,000 Hz which is the data rate for the simulated PAM
systermn.

A digital filter that could compensate for the channel lowpass characteristic
would be an FIR "forward" filter, often referred to as an all-zero filter since
the filter frequency response consists of all zeroes. Ideally, one would like
to design an adaptive filter which could adjust its tap weights to compensate
for variations in the channel characteristics. ]

Figure 13 shows the topology used for simulations of the lowpass channel
equalizer. Figure 14 shows the adaptive filter equalizer designed for this
simulation. An eighth-order fractionally spaced fast transversal filter (FTF)
was chosen as the adaptive filter. The two filter channels are fed by a
sampler that samples at the Nyquist rate (twice the baud rate}. Each
channel is a baud rate filter. The FIF filter implements a general order
recursive least squares (RLS) filter algorithm. The filter output is at the
baud rate. The filter output is fed to a comparator (slicer) to determine
whether a +a or -a symbol was sent. The filter weights are updated by the
difference signal between the output and the sliced signal. The filter is
trained by the original bit sequence for 32 bits, and then the filter switches
to its own sliced output to calculate the error signal. The RLS parameter
was chosen as 1.0. '

24
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Figure 14. Adaptive Equalizer for Lowpass Channel
Two-Channel Fractionally Spaced Fast Transversal Filter A = 1.0

The RLS adaptive filter was chosen due to its superior convergence
properties and excess error properties. An N-th order RLS filter generally

converges on O(N) iterations, and has excess error ~0 when A = 1.0. The
order of 8 and A = 1.0 where chosen as an optimal match of filter complexity
and performance. Choosing A = 1.0 yielded the lowest error signal power
for all cases tested. An order eight filter yielded the best error power
performance of the orders tested (6 - 12}. The training sequence length of

32 was chosen as a best compromise between filter convergence behavior
and system delay (from training). Figure 15 shows the typical convergence

behavior of the error signal. Choosing A = 1.0 results in a filter that is less

stable than for A < 1. The performance of this equalizer in the presence of
noise is described later.
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Figure 15. Convergence of Pre-dftf Error Signal, a = 0.99, on2 =0

A fractionally spaced equalizer was chosen due to the uncertainty in desired
sampling phase for a signal with severe ISI as will be the case with the
lowpass channel simulated. Figure 16 shows the received signal at the

sampler with « = 0.999. Figure 17 and Figure 18 show the corresponding
sample values for each received baud. The sample times are 21—-1- apart, or half
the baud period. Note that each sampler produces samples at the baud rate.

It can be seen that there is substantial energy for each bit at both sample

points.

27
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Figure 19. Scatter Diagram for Lowpass Channel Equalizer
a = 0.999
an =0

In [5], Qureshi shows that a fractionally-spaced equalizer is insensitive to

timing phase. This is partly due to the fact that sampling at > 2? prevents

aliasing at the sampler. For a channel with severe ISI, it would be difficult to
design an adaptive filter with baud rate sampling that could adjust its
sampling phase to prevent sampling errors.

Table 5 shows the filter channel input powers and filter error power for
o = 0, 0.9, 0.99, 0.999. For each case, the additive noise is zero. No bit
errors were observed. The worst case scatter diagram (o = 0.999) {s shown

31



in Figure 19. It is clear from these results that the equalizer performed
extremely well when no channel noise was added.

(4096 points taken, 32 skipped)

p=0 p=09 p =099 |p= 0999
Error power (dB) -66.2 -57.8 -60.1 -51.2
Input O power 63.98 19.49 2.305 0.0577
Input 1 power 28.42 20.81 2.303 0.0569

Table 5. Performance of lowpass channel equalizer

3.3 Multipata Channel

The frequency response of the multipath channel is determined from the
difference equation.

y{n} = ag x{n - ng} + a; x(n - n} {40)
This results i the z-transform

Holz) = % = agz ™0 + a3z (41)

The resulting frequency response is:
Ho(e!®) = agedn08 + ajedn1® ' (42)

Let ng =0, A =nj - ng = n;. Then within a frequency independent delay
term '

Hz(ed® = ag + aje’as (43)

and

| Ho(el® | = v 292 + 212 + 2apa;cos(A8) , (44)

where 6 obeys (38). Assuming ap =1

| Hg(eje) | = ‘\[1 + a2 + 2a;c0s(A6) (45)

This frequency response will have periodic nulls occurring where



cos(AB) =-1; A = xn(2n + 1) (486)

It is desired to simulate the system where the nulls occur at f = 5000 Hz.
Then

T
AB=xm A=—= 47
T2 =9 T anf/t (47)
and
80,000
A = 70,000 = 8 (48)

Figure 20 shows a plot of |H2(e19] | where A = 8 and ag=1, a; =02 08,
0.99.

3.4 Adaptive Equalization with Decision Feedback

For this section, it is required to design an equalizer to compensate for a
lowpass pole of 0.9 and multipath distortion for a; = 0.1, 0.2, 0.8, 0.99. The
frequency response of this channel would be obtained by evaluating the

product H(e)®)Hz(e!®). Figure 21 is a plot of the impulse response of this
channel for a = 0.9, a; = 0.99.

The z-transform of this channel is given by

(1-a)
1-az!

H(z)Ha(2) = o (1 +2a;z% (49)

where the delay term z! is at the sampling rate of 80,000 kHz. In Section

2.2, an appropriate equalizer for H;(z) was shown. That FIR filter would be -

unable to compensate for Hz(z) since it is an all-zero filter. For A = 8, Ha(z)
can be killed by a filter with response

1 1
Falz) =77 2122180.000 = 1 + a1z} 10,000 (50)

an IIR filter of order 1. Such a filter can be implemented as a feedback FIR
filter.

In [5], Qureshi discusses a popular equalizer structure known as a decision
feedback equalizer (DFE). In this system, a feedback FIR filter is fed by bit
decisions from the slicer. The feedback filter subtracts either its positive or
negative impulse response from the signal at the input to the forward filter.
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Figure 2. Plot of Multipath Spectral Response
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Figure 21. Impulse Response of Multi-Path Channe] with Lowpass Response
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The feedback is capable of cancelling zeroes in the spectrum of the input
signal. It is also capable of improving the ability of the forward filter to
cancel poles, since the forward filter is no longer forced to attempt to drive
the overall system impulse response to an impulse, i. e. the forward filter no
longer requires as much high-frequency gain.

Figure 22 shows the topology for the adaptive equalizer designed to equalize
the channel with lowpass and multipath characteristic. Figure 23 shows the
DFE designed. The feedback path is implemented as a fourth-order channel
in the Fast Transversal Filter {fast RLS adaptive filter). Both forward and
feedback paths are updated with the same error signal.

35



§ ———p IR |
A [] 0 5L
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Two Channel Fractionally-Spaced FTF Forward Filter
One-Channel Feedback Path

A=1.0

Table 6 tabulates the result for the DFE for o = 0.9, a; = 0.1, 0.2, 0.8, 0.99.
For each case, the additive noise is zero. The FTF error signal showed rapid
convergence as in Figure 15. Figure 24 shows the worst-case signal at the
sampler, for the case when a; = 0.99. Substantial ISI is evident. For the
cases examined, no bit errors were observed. The worst case scatter
diagram, for aj = 0.99, is shown in Figure 25. The error power for each case
is extremely low. though it is growing when a; = 0.99. The DFE appears to
equalize the channel very well when no additive noise is present.
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Figure 24. Received Signal at Sampler
=09
a1 = 0.99
a;=0.1 a;j =02 a;=0.8 | a; =0.99
Error power {dB) -61.7 62.0 -60.2 -41.8
Input O power 22.48 25.84 53.49 64.94
Input 1 power 23.69 { 26.99 55.18 67.12

Table 6.

Performance of DFE equalizer
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It is interesting to examine the resulting tap weights for the DFE after
convergence. Table 7 lists the DFE tap coefficients for the case when

a = 0.9, a; = 0.99. Table 8 lists the tap coefficients when « = 0, a; = 0.99.
For both cases, adjacent pairs of weights are approximately the negative of
each other. In (50) it was proposed that the multipath distortion could be
cancelled by one tap. The same cancellation is achieved when the tap
weight magnitudes are equal and they alternate in sign. The feedback filter
attempts to distribute energy as evenly as possible over the tap weights. In
Table 7. it is clear that the feedback filter is helping the forward filter to
cancel the pole. '



#4 adapt_dfelo

1
3
8 8

0.284941
0.0688397

0.00949154
-0.189951

-0.34718

## adapt_dfelo
1

3
8 8

0.130889
-0.0163403

7.78414e-05
0.0272603

-0.249826

p=20.9 al-=0.99
4
-0.698204 0.491805 -0.439485
-0.0195361 -0.00204814
0.13509 0.0558455 0.0573221
-0.00649044 0.0103462
0.338972 -0.170748 0.1180536
Table 7. DFE Tap Weights After Convergence
o=0.9
a; = 0.99

P = 0.0 al = 0.99

4
-0.0894833 0.0748124 5.63962e-05
-0.00436532 -0.00157791
-0.0119305 0.00592798 -0.0326399
0.00542252 0.00318317
0.24085 -0.234051 0.249967
Table 8. DFE Tap Weights After Convergence
a=0
a; = 0.99

3.5 Effects of Additive Noise

0.286197

0.0221727

0.00171569

-0.0306322

An important figure of merit is the performance of the adaptive equalizers in

the presence of additive noise in the transmission channel. It is known that

additive noise in the received signal will affect the updating of the adaptive
filter tap weights. For RLS filters, the noise is cancelled at a very slow rate.
One measure of performance is to compare the performance of the equalizer
system with no channel distortion to a PAM system with no equalization.

It was determined that an SNR of 25.5 dB at the sampler will result in a
Py = 0.0007 and an output error power of -15.53 dB for the forward filter
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system. For the DFE, a Pp = 0.0175 occurs for SNR = 28.52 dB and error
power = -17.5 dB. These error values are much worse than for non-
equalized systems. The likely cause of this behavior is that the equalizer is
trying to drive the overall system impulse response to be an impulse. This
results in a high-pass filter response which will emphasize noise. The DFE
system is much more susceptible to additive noise (3 dB) than the forward
filter system. This is probably due to the fact that errors in the predicted
bit propagate through the DFE.

Both systems exhibited a threshold effect on the BER. If SNR was decreased
by less than 1 dB, the BER increased rapidly. However, the FTF error power
does not exhibit this threshold effect. Despite initial first impressions, the
FTF error power is not a good means of predicting BER for the adaptive
equalizers.

Error performance with channel distortion is also important. For the
forward filter system, Pp = 0.0022 is observed for a = 0.99, and SNR 33.6
dB. This is worse than for the case of the clean channel. That is intuitive
since the forward filter will adapt to a more highpass response in this case.
Py, = 0.44 is cbserved for o = 0.9, a) = 0.99 and SNR = 38.13 dB for the DFE.
For SNR = 38.35 dB, no errors are observed.

It can be concluded that adaptive equalizers are very sensitive to adutive
noise and will likely not perform in environments with SNR < 28 dB. The
DFE shows more sensitivity to additive noise than the forward filter. In
either case, it should be noted that the BER for the distorted channel
without equalization ~0.5. The equalizers are necessary for any possible data
transmission at high bit rates over these channels. Figure 26 shows DFE

scatter response, SNR = 38.17 dB, P, = 0. a = 0.9, a; = 0.99.
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