No.3 August 14, 1990
Capsim Application Note
Memory Management in Capsim Simulations
Introduction connected to the buffer did not consume all samples in the

In this application note, we will describe how memory
usage grows in Capsim simulatdons that use multi-rate
sampling and vector processing. Techniques for managing
memory rsage in long simulations will be introduced.

Buffers in Capsim

Capsim uses buffers 10 connect blocks and to pass samples
between blocks. These buffers are actually linked lists and
the elements are called cells. Each cell represents cither a
char integer, float or any other data type. Whena star
generates samples, it does so by placing them on its output
buffer through the call ir_out(i) followed by sampleQui(0})
= value. In this case, the peinter to buffer i is incremented
by a celi and now points to an empty but existing cell. The
statement, sampleQut(0)=value, copies value into the cell.
sampleOut is the buffer name. Now, initially Capsim allo-
cates 128 cells for each buffer. Therefore, a simple
increment of the buffer pointer is sufficient. However, if
there are no more cel

samples available. In this case, buffer 0 from the coder

buffer, Capsim will allocate another 128 cells. Hence, the
size of the buffer grows. Under many circumstances, this
is will take place since the star connected 10 the source
will consumne all samples available on its input buffer
before retuning contro! to Capsim.

There are, however, many situations in multi-rate simula-
tions, where, for very long simulations, instability may
result. In this case, a buffer may overflow in the sense that
it requires more memory than the Capsim kernel will
allow it to have. A typical case is illustrated in Fig. 1. The
data source produces, say, 128 samples each time it is
visited. Normally all sources produce 128 samplesat a
time. We will make this assumption in the following
discussion. The coder processes all 128 samples on its
input and produces N* 128 samples (let N=8). These
samples are input to an adder. Another source, the gauss
star, is also connected to the adder, When it is visited, it
produces 128 samples. Now, the adder star looks at its
input buffers and determines the minimam number of

B B B T R B T2

Figure 1. Buffer growth control using pacers

star contains 8%128 samples , while the buffer from gauss
contains 128 samples. Thus, the adder will process only
128 samples. It then outputs the 128 samples 1o the sink
star which simply absorbs them. Buffer 0 at the adder
input now has 7* 128 samples. At this stage, the data star is
visited again by the scheduler and 128 more samples arc
gencrated. The coder process all 128 samples and outpuis
8*128 samples on its output buffer. But this buffer already
has 7*128 samples. So Capsim allocates another §*128
cells, The adder can only process 128 of these since the
gauss star only produces 128 samples. Obviously, we have
an unstable simation in which the buffer at the adder input
will evenmally overflow if the number of samples gener-
ated by the data star is long enough.

Pacers

The problem is that the gauss star does ot gencrate
enough samples at each visit. This problem can be
carrected by pacing the gauss star. That is, we control how
many samples it produces and when to produce them. The
concept of pacing is dllustrated in Fig. 1 (b). Notze the
buﬂ'ucormectingthecoderoutpuuomegmssm.'misis
a pacer connection and Capsim draws the connection
using a dashed line. When a pacer is connected to a source
u.thembobmthepacebuﬂuandmdsinanthe
zamples on its input buffer. It ignores the value of the
samples, but it counts their aumber. Tt then generates that
many samples on its output buffer. Whence, when the
coder produces 8%128 samples, the gauss star also pro-
duces 128*8 samples. The add star processes all 8*128
amplﬁmdmdsmunwmesinksm.musmemaxi-
mum number of samples on an output buffer is now
bounded by 8*128, no matter how many samples the data
snrgmmws.nwmapawbetwmmemdamdmc
source may also be vsed 1o control buffer growth, The
season is that the coder produces 128 samples for every
input sample. Thus, if we the let the data star produce only
mcﬂmplepervisil.mcnbuffc.rmwlhmbeoummned
in this manner. This requires that the oversampling raie be
specified to the data star. This is done through the pace
rate parameier, which is the inverse of the oversampling
ratio. However, pacing the gauss star solves the problem
in this case.

As was noted, each source star with pacer capability hasa
pumber of parameters associated with the pacer. These
include the pace rate and the number of samples to
generate on the first visit. The pace raie conirols the
geoeration of samples. For example, if the pace rate is 0.01

~“en, for every 100 samples on the pace buffer, one

‘ mpleisgemmwdbyﬂlesom.ﬁwhm'cemﬂso
huapnnmuuwhichspeciﬁuﬂ\etomlnmbaof
samples to generate. This can be set 10 -1 30 that samples
are generated indefinitely (this is nsed when the staris
paced and anotber source determines the total number of

samples to generate). Thus, in Fig.1, the data star may
have the number of samples sst to, s2y, 100000, while the
gauss star is set 1o -1 since it is paced.

Monitoring Buffer Growth

Capsim provides the user with a file called buffer.dar
which stores information on the buffer size for all connec-
tions in the universe and all galaxies. This file is created
every time a simulation is run. The information in the file
can be used by the user to determine problems and 10

identify the stars that need pacing.

Table 1. Buffer Monitoring, no pacers
gauss0:0 | pal:0 1 nodel:0 2B | node0:0 48
bdaw?:0 } pode(:0 9 podel-0 29 | node0:0 49
linecode0:0 1] pode0:010 | nodeD:0 30 | noded:0 50
linecodeD:1 1] nodel:0 11 nodel:0 31 | node0:051
Enecode00 2] nodeC:0 12 node0:0 32 1 node0:0 52
lineoode0:0 3] nodel:0 13 nodel:0 33 | noded:0 53
linecode0:0 4] nodeD:0 14 podeQ:0 34 § mode(-0 54
linecode0:0 5] node(:0 15 node0:0 35 | node0-0 35
linscode0:0 6 node0:016 | nodeD:0 36 | pode(:(56
linecode0:0 7| nodel:0 17 node0:0 37
linecodeD:0 8] node0:0 18 nodeD:0 38
node0:0 1 nodel:0 19 nodeD:0 39
node0:0 2 node0:0 20 node:0 40
pode0:0 3 80de0:0 21 nodal:0 41
pade0:0 4 node(:0 22 podel:0 42
nodel:0 5 nodel:0 23 pode0:0 43
nodeD:0 6 node(:0 24 | model:0 44
node0:07 node(:025 | noddd0 45
node0:0 8 podel:0 26 podel:0 46
2dd0:0 1 pode(:027 | nodel:0 47

Table 1 shows the results of the topology in Fig. 1. (8)
where buffer overflow occurs. The number by each
connection is the number of segments (i.e. 128 cells) that
have been allocated for that connection's buffer. Note that
the buffer, node0:0, which connects to the adder input
from coder, grows to 56 segments.

When pacers are used, as in Fig. 1 (b), buffer growth is
bounded. The results are shown in Table 2. Note that the
maximum number of segments is 2. That is 2x128 cells.

Table 2. Pacers

gauss0 1
linecode:D 1
poded:0 1
nodel:1 1
sodel:2 1
pauss0:0 2
add0:01

plod:0 1

Sy WA

L L T T r—

Figure 5. Carrier Recovery System Block Diagram

The carrier recovery block is a galaxy which is shown in n
Fig. 6. Based on the previous discussion, it is obvious that | ——————Jrable 5. With Pacers
4 serious buffer overflow problem exists at the mixer bana0:0 1 rempl0:0 9 mﬂf
input. This is demonstrated in Table 1 . Note that Capsim ooden0 rmp0075 | podedd 1
also provides information on the buffers inside the galaxy. linecode0:0 3 plotG:0 1 arrech/square 1
Now, by using pacers, shown by the dashed lines, we are Bnecode0:04 | plx0:02 asrrecOAuncdFilier:0 1
able 1o control buffer growth, as demonstrated in Tables mgg 00T ’““’g’d'n ‘l'*’y'“&o !
linecodeD:0 7 S:do T mixerl 0 1
linecode008 | plab:0 75 -
1w filnyg0:0 1 y spectrum0:0 1
Pk @“ET Sy —> fimy002 | Socr
o0 node]:0 2
l"ignres_.Clrrierrecovu'yphxy m’;gm —de]:0 TS
Table 4. No Pacers iR Bk
bdual0 § reampl00 9 podel:] 1 PO 8
Yinecoded:0 1 - carreclisquare:0]
Einecode:0 2 reanplO:0 75 carrecO/umedFier0 t| Summary
Mmecode0:0 3 plad0 1 carrecVdivbytwo0D |
Eions | P00z canecC01 This application note highlighted issues related to buffer
linecodol-0 6 plod0 73 m‘g{, 1 growth and possible overfiow when multi-rate sampling
linecode0:0 7 o0 74 spectram0:0 | simulations are run in Capsim. Methods o control buffer
lineoode0:0 8 P00 75 node1:0 76 growth were introduced which include pacing sources.
m ; wﬂ"f x:g ;”‘ Moreover, # feature in Capsim for monitoring the size of
- model 0 2 node1:0 79 buffers in a simulation was introduced. To deal with all
fknyq0:0 8 - node1:0 80 aspects of buffer growth requires a detailed explanation of
resmmpl0-0 ; ode]0 75 - the scheduling algorithm in Capsim, among other topics.
w00 a0l nodel 0 124 We will leave this to & future application note.
remmpl0 § node0:0 1 -
Acknowledgement

Comparing Table 4 and § we see that the buffer node1:0

connected 1o the mixer no longer grows beyond 75 The author would like to acknowledge Bill Hughes from
scgments. If more points were simulated with no pacers, GE Corporate Research for his report and insight into
this buffer will go unstable, Note that in this simulation, buffer contro! in Capsim,

100 bits were generated.

m

Frepared by Saman Ardalan

Center for Communiations and Signal Procasing
DepL of Bectrical and Computer Engineering
Novtk Carolins State University

Raleigh, NC 27695.7914

