Capsim™ Simulations
and
Buffer Management

The Following is a Contribution by
Bill Hughes, GE Corporate Research and Development,
Schenectady, New York.

Product Number CAP213

(X

XCAD Corporation

AR R AR

)

Running Long Simulations

Under most circumstances Capsim manages the buffer space required for a simulation
transparently to the user. The program creates a buffer for each input to a Star or Galaxy
and spaceis allocated, as needed, as the simulation proceeds. There is a maximum buffer
size that the program will permit, however, which can be set by the systems operatortc a
size appropriate for the memory capacity of the computer being used. In fong simulations
this maximum buffer size can be exceeded. Inthese cases the userwillhavetotake specific
action when setting up the simulation to make sure buffer overflow will not occure. This
requires an understanding of how Capsim orders a simulation and how stars generate and
consume samples.

The possibility of buffer overflow should be considered anytime the number of samples to
be processed in some part of the simulation exceeds the maximum buffer size (typically
~12,000 samples). Figure 1 represents a simple case that can be expectedto cause buffer
overflow if the total number of samples is large enough.

SOURCE
#

' 1™ |

= = STRETCH & - _I_ -

SOURCE
#2
=

Figure 1

Simulation Control in Capsim

The Capsim program has a relatively simple paradigm for controlling the order of the
simulation. This subject is covered in greater depth elsewhere in this manual but for the
purposes of avoiding buffer overflow the process can be thought of as follows: Starting at
the Universe level, the Capsim program determines a “visitation order” for all of the Stars
or Galaxies at that level. For the present purpose, this ordering can be assumed to be
random. Once the visitation order is established it remains fixed until the simulation
completes. Each Star or Galaxy is visited, in the visitation order, to process the samples
on its input buffer. When a Star is visited (called), control is passed to that Star's program

1

which then runs until it terminates (returns). Most Stars will process as much data as
possible from the input butfers before returning control to Capsim. For asingle input Star,
the entire buffer will usually be processed. Where there are multiple inputs, at least one
input buffer would be exhausted. Stars can always be written such that they stop short of
exhausting an input buffer. This is done in some special cases but it is to be avoided in
general.

When a Galaxy is visited, its component Stars and Galaxies are ordered and visited inturn,
as described above, until no component of the Galaxy has any data in its input buffers that
it can process. This means that the Galaxy itself has processed as much data as possible
from its input butfers. Since the processing that takes place at the Galaxy level is under
control of the Capsim program, there are no exceptions to this operation as there can be
with Stars. Capsim then moves to the next higher Galaxy and continues visiting
components there.. This process continues in the initial fixed pattern until no Star or Galaxy
is found that can process data from an input buffer. The run is deemed to be finished at
this point and Capsim returns control to First tool.

Controls Provided to Control Data Flow

Capsim provides three ways in which data flow can be controlled. These are sufficient in
most, if not all, cases to prevent buffer overflow, even when an arbitrarily large number of
samples is to be processed. Flow control can be effected by: 1) Limiting the number of
samples output by a Star on each cali, 2) By collecting a select group of Stars into a Galaxy,
and 3) By Pacing a source star's output. Methods 1 and 3 are effected by the Star code
while method 2 is a part of Capsim itself.

SOURCH o o | STRETCH o= - SINK
10x
. I Clock
Figure 2

Consider the simple case of Fig. 2 in which a source Star provides input to a "stretch” Star
whichincreases the number of samples by 10. If we setthe source for 10,000 total samples
we have a problem. The first time the source Star is called, it will output 10,000 samples
and when “stretch” is subsequently called it will read these in and produce 100,000 output
samples. In mostcases this will exceed the maximum buffer size and Capsim willterminate
and produce an error message. This case is mitigated by limiting the number of samples
a source star can output in any one call. The Capsim Star design guidelines advise that
sources should limit the number of samples they output on each call (when Pacing is not

2

being used). The suggested limitis NOSAMPLES, a global constant which can be set by
the system manager to any integer. Normally NOSAMPLES = 128. Allofthe source Stars
provided with Capsim obsarve this limitation. The case of Fig. 2is not a problern for source
stars which follow the guideline because the source will output NOSAMPLES, “stretch” will
output 10 x NOSAMPLES and “sink” will empty its input buffer, on each pass through the
simulation. Of course, if the stretch parameter is very large, “stretch” could exceed the
maximum buffer size on a single call. For this reason, the Star design guideline
recommends that all Stars that can have a large number of output samples for each input
sample be limited to NOSAMPLES output per call.

ADD

OURCE___ P + = - SINK

Z

Figure 3

In the case of Fig. 3, additional control is required. Here a source star feeds one input of
an “add” star which is part of a feedback loop. On the first pass through the simulation the
source would output 128 (assuming NOSAMPLES = 128) samples and the “delay” would
output 1 sample, i.e. 0.0 (this is the way delay Stars work). On the next pass the source
Star would output another 128 samples and the “add” star would read in one sample
(because there is only one sample on its second input) and output one sample. The delay
Star would output one sample. Eventually the input buffer {from the source) on the “add”
Star will overflow. Overflow can be avoided by using method 2). If the feedback loop is
incorporated into a Galaxy, as shown in Fig 4., the operation is much different. When the '
source is visited it outputs 128 samples. Then Capsim goes into the Galaxy and staysthere
until all 128 samples on the Galaxy input buffer are processed, by alternately visiting the
“add” and “delay” Stars. This not only prevents buffer over flow but it speeds up the
simulation and minimizes buffer memory requirements. Onthe down-side it uses hierarchy
to solve a simulation problem whereas we would like to reserve hierarchy for other
purposes i.e. to hide complexity, create new objects, and group elemsnts as they will be
implemented.

rf?f

Figure 4 |

Not all data flow problems can be soived by the Galaxy approach together with a limitation
of source output to NOSAMPLES/call. Fig 5 is a simple example of a simulation that
requires additional controls to prevent buffer overilow. A source, limited to 128 samples/
call, is followed by a “stretch” Star that stretiches by 128. Ii the “stretch” star is allowed to
empty its buffer on each call, then its output buffer will overflow. i it is limited to 128
samples/call then its input butfer will overflow as the number of samples becomes large.
To provide a means to deal with situations of this type and to eliminate the necessity of
forming Galaxies where they are notdesirable forother reasons, a method of Pacing source
Stars has been provided.

OURC

- =—» STRETCH & = SINK
128 x

ICIock

Figure 5

The Capsim Star design guidelines call for each source star to have a Pacing input which
can be used or ignored by the user. If the Pacing input is left unconnected the source Star
produces a maximum number of samples determined by the parameter “num_of_samples”

and then quits. The number of samples that can be output per call is limited to
NOSAMPLES.

If the Pacing input is connected, two additional control parameters can be used, i.e.
“samples_first_time” and “pace_rate”. The first time the Star is called to output samples,
it outputs a number equal to the parameter “samples_first_time”. On the first, and each

4

subsequent call, the star empties its Pace input buffer and keeps a running tota! of how
many samples have been removed. At each call, after the first, the star outputs as many
samples as possible without the running tota! of the samples output exceeding either of the
following:

- (Total samples seen on the Pace input to that point) x (pace_rate)
rounded to the nearest integer + samples_first_time.
- num_of_samples

The number of samples on any single call is still limited to NOSAMPLES.

OURCE_______._._’ STRETCH —8——8——] SINK
128 x
Pace I Cock
pace_rate = 1/128.0
samples_first_time = 2
Figure 6

Inthe simutation of Fig. 6 the action willbe as follows: Onthefirst passthe source will output
two samples. The “stretch” star will input a sample and output 128 samples (assuming
NOSAMPLES = 128) and the "sink" will empty its input buffer. Onthe next pass the source
will empty its Pace buffer and determine that it has seen 128 samples there. It then
calculates its total output target as 128/128.0 + 2 = 3 allowing it to output another sample.
The "stretch” star will read in another sample and output 128. On the third passthe source
Star will empty it's Pace buffer and calculate it's cutput target as 256/128.0 + 2 = 4, allowing
it to output another sample. The process will repeat untilthe total number of samples output
by the source equals num_of_samples. The source will stop outputting samples at that
point but it will continue to empty its Pace buffer to avoid any possible overflow there. The
simulation will continue until both “stretch” and "sink” have emptied their input buffers. By
using pacing in this way, a simulation of any length can be run and the maximum buffer size
will never be greater than 128 samples.

Another feature of source pacing is illustrated in Fig 7. If the Pace input is connected and
the num_of_samples parameter is given a negative value, then the number of samples the
source Star will output is unlimited. In Fig 7 the "sine” Star outputs a number of samples
=samples_first_timethe firsttime itis called. Afterthat, it will matchit's outputtothe number

5

of samples on the “mixer" Star's #1 input thus assuring that the “mixer” gets as many
samples as it needs from the “sine” Star no matter how long the simulation runs. This is
often convenient for ancillary source Stars, such as local oscillators, noise generators,
clocks, etc. 1tis usually undesirable to have these sources be the limitation on the number
of samples to be run. For most simulations, it will be found convenient to pace all of the
source stars but one and set their num_samples parameter to -1. The remaining source,
usually the primary data source, will have num_of_samples set to a positive value and it
will control the length of the simulation. There must, of course, be some limitation on the
number of samples or the simulation will never terminate.

MIXER

1.&@ P

—%
2
.

SINE samples_first_time = 128
]QU_ ———& num_of_samples = -1
pace_rate = 1.0
! Pace

Figure 7

Itis possible to set up configurations that cannot be stabilized by the methods provided. The
networkillustrated in Fig. 8, for example, will overflow the buffer on the #1 input to the “add”
Star if the number of samples to be run is large enough.

ADD
source] . 1 ¥ . . SINK

2

E—p STRETCH
110 x

ICIock

Figure 8

ADD
OURCE 1
m = o = SINK
1 -+
I 2
OURCE _ o » STRETCH
#2 1/10 x
- I Clock
Figure 9

In most, if not all, of these cases it is possible to reconfigure the network so that the desired
simulation can be run. Fig. 9 illustrates one way to reconfigure the network of Fig. 8. Two
instances of the source are used. If they are given the same parameter values, except for
the control parameters, they will produce the same stream of sample values. By pacing
source 1, however, we keep it from producing an excessive number of samples onthe
“add” Star input.

